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On the basis of the stationary laminar boundary layer equations, an analysis of the external flow
effect on the characteristics of the boundary layer of a continuously moving flat plate is carried out.
Numerical and approximate analytical solutions of the problem have been obtained for different val-
ues of the parameter ε, which characterizes the ratio of the velocities of the moving plate and cocur-
rent flow. Correlation dependences have been constructed for determining the boundary-layer
thickness and flow shear on the body surface.

One of the most sequentially studied problems in fluid mechanics is the simulation of flow near a flat
plate placed parallel to the direction of a main stream. However, despite the major successes achieved in the
solution of this problem for a laminar regime of flow [1–4], there are a number of insufficiently studied
features in the structure of the flow field. For example, there are relatively few works [5–9] devoted to the
mechanism of interaction of a cocurrent flow with the boundary layer of a continuously moving plane sur-
face, i.e., the mechanism that plays a very important role in various technical and gas-dynamic problems.

Below we present the results of extensive mathematical simulation of a laminar regime of an infinite
cocurrent homogeneous flow past a flat horizontal continuously moving surface in the entire range of change
of ε from zero to infinity.

The initial equations are the boundary-layer equations that for a two-dimensional stationary flow of
liquid have the form

∂u

∂x
 + 
∂v

∂y
 = 0 ,   u 

∂u
∂x

 + v 
∂u
∂y

 = ν 
∂2u

∂y2 . (1)

with boundary conditions

y = 0 :  v = 0 ,   u = uw ;   y → ∞ :  u → u∞ . (2)

We introduce the self-similar variables

ψ = (νu∞x)1
 ⁄ 2 F (ζ) ,   ζ = 





u∞
νx





1 ⁄ 2

 y . (3)

As a result of transformations, Eqs. (1)–(2) yield

F′′′  + 
1
2

 FF′′  = 0 ,   F (0) = 0 ,   F′ (0) = ε ,   F′ (∞) = 1 , (4)
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with the prime meaning a derivative with respect to ζ.
We note that the parameter ε = uw

 ⁄ u∞ is a measure of the magnitude of the effect caused by the
action of a cocurrent flow on the boundary layer: when ε = 0, we have a regime of flow past a stationary
surface [10], and the case of ε = ∞ corresponds to the motion of a plate with velocity u = uw through a
stagnant fluid [11]. The two-point boundary-value problem (4) was solved numerically using Heming’s inte-
gration scheme, having the fourth order of accuracy, by reducing system (4) to the corresponding Cauchy
problem. The lacking boundary condition F′′(0) was selected by the Newton–Rafson method so that the as-
ymptotic condition F′(∞) = 1 could be satisfied on the outer edge of the boundary layer to within D10−11.
The data of calculations for ε changing from 0 to 0.9 are given in Table 1. Among the physical quantities of
interest are the velocity distribution u and the local coefficient of friction cf that can be found from the for-
mulas (Rex = u∞x ⁄ ν)

u
u∞

 = F′ (ζ) ,   cf Rex
1 ⁄ 2 = 2F′′  (0) . (5)

As is seen from Table 1, the coefficient of surface friction cf, the displacement thickness δ∗ , and the
form-parameter of the boundary layer H decrease monotonically with increase in ε. The greatest rate of fall
is typical of the quantity δ∗ .

Further, we consider the behavior of the solution of Eqs. (1)–(2) for ε > 1. We note that for ε = 1
problem (4) admits integration in quadratures: F = ζ and F′ = 1. For the regime with ε > 1, it is advantageous
to represent the unknown functions otherwise to have the entire complex of values of ε in the range of
change from 1 to infinity. This is attained by the introduction of new variables (the prime denotes the deriva-
tive with respect to η):

uw − u

uw − u∞
 = f ′ (η) ,   v = √(uw − u∞) ν  





1

2
 f − 

1

2
 f ′η




 x−1 ⁄ 2 ,   η = 





uw − u∞
ν





1 ⁄ 2

 x−1 ⁄ 2 y . (6)

In accordance with the transformations (6), Eqs. (1)–(2) can be rewitten as

f ′′′  + 
1
2

 f ′′ 




ε
ε − 1

 η − f



 = 0 ,   f (0) = 0 ,   f ′ (0) = 0 ,   f ′ (∞) = 1 . (7)

The boundary-value two-point problem (7) can be solved by the method of successive approxima-
tions. The idea of the approach rests on the division of f(η) into n functions: f = f0 + f1 + f2 + ..., where, as
the zero approximation, we take the solution corresponding to the situation where the boundary conditions
have the form f0(0) = 0, f0 ′(0) = 1,  f0 ′(∞) = 1. As a result we obtain an infinite sequence of problems:

• zero approximation

f0
 ′′′  + 

1
2

 f0
 ′′ 




ε
ε − 1

 η − f0



 = 0 ,   f0 (0) = 0 ,   f0

 ′ (0) = 1 ,   f0
 ′ (∞) = 1 ;

TABLE 1. Results of Numerical Calculation of a Boundary Layer for 0 ≤ ε < 1 

ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F′′ (0) 0.332057 0.327046 0.313358 0.292432 0.265232 0.232455 0.194626 0.152159 0.105389 0.054591

(δ∗  ⁄ x) Rex
1 ⁄ 2 1.720788 1.446399 1.213270 1.009272 0.827060 0.661826 0.510233 0.369866 0.238918 0.115994

δ∗  ⁄ δ∗∗ 2.59110 2.21131 1.93592 1.72565 1.55912 1.42356 1.31080 1.21539 1.13351 1.06239
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• first approximation

f1
 ′′′  + 

1
2

 f1
 ′′ 




ε
ε − 1

 η − f0



 − 

1
2

 f0
 ′′f1 = 0 ,   f1 (0) = 0 ,   f1

 ′ (0) = − 1 ,   f1
 ′ (∞) = 0 ; (8)

• second approximation

f2
 ′′′  + 

1
2

 f2
 ′′ 




ε
ε − 1

 η − f0



 − 

1
2

 f0
 ′′f2 = 

1
2

 f1 f1
 ′′  ,   f2 (0) = 0 ,   f2

 ′ (0) = 0 ,   f2
 ′ (∞) = 0 ;

• ith approximation (i = 3, n
___

)

fi
 ′′′  + 

1
2

 fi
 ′′ 




ε
ε − 1

 η − f0



 − 

1
2

 f0
 ′′fi = 

1
2

  ∑ 

j=1

i−1

 fj fi−j
 ′′  ,   fi (0) = 0 ,   fi

 ′ (0) = 0 ,   fi
 ′ (∞) = 0 .

It can be easily seen that f0 = η and f0 ′ = 1. This solution describes a homogeneous flow which is parallel to
the plate surface. Knowing f0, by direct integration of (8) we find the functions f1 and f1 ′:

f1 = η 



erf 




η
2 √ε − 1




 − 1




 + √ε − 1

π
 



2 exp 




− 

η2

4 (ε − 1)




 − 2




 ,   f1

 ′ = erf 




η
2 √ε − 1




 − 1 . (9)

And, finally, taking into account relation (9), after simple but cumbersome calculations we write out an ex-
pression for f2 ′ in the final form:

f2
 ′ = 

ε − 1

π
 




2 − π
2

 erf 




η
2 √ε − 1




 + 2 exp 




− 

η2

4 (ε − 1)




 − 1 − exp 




− 

η2

2 (ε − 1)








 +

+ √ε − 1

π
  






∫ 
0

η

exp 



− 

η2

4 (ε − 1)




 erf 





η
2 √ε − 1




 dη +

+ 
1

2
 η exp 




− 

η2

4 (ε − 1)




 − 

1

2
 η exp 




− 

η2

4 (ε − 1)




 erf 





η
2 √ε − 1








 . (10)

Thus, we have found the first three terms of the series that make it possible to construct the velocity
profiles (uw − u)/(uw − u∞) for different values of ε and also to compute the flow shear on the plate

TABLE 2. Results of a Numerical Calculation of a Boundary Layer for 1 < ε ≤ ∞ 

ε f ′′ (0) ηu ε f ′′ (0) ηu

1.25 1.214624 1.7377 20 0.462985 5.8256
2 0.720585 3.0993 30 0.456468 5.9926
3 0.599331 3.9029 50 0.451332 6.1352
4 0.552800 4.3614 100 0.447524 6.2478
5 0.527900 4.6664 200 0.445633 6.3014
6 0.512328 4.8869 500 0.444501 6.3426
8 0.493865 5.1870 1000 0.444125 6.3546

10 0.483263 5.3832 ∞ 0.443748 6.3674
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τw

ρu∞
2 Rex

1⁄2  = −(ε − 1)
3⁄2f ′′(0) (the "minus" sign means that the plane surface has propulsion) and the boundary-

layer thickness δu = ηu




νx

uw − u∞





1 ⁄ 2

, which is defined as the distance from the wall to the point at which f ′

= 0.99. By virtue of Eqs. (9)–(10) we have

f 
′′ (0) = 

1

 √ π(ε − 1)
 

1 + 

1

π
 (ε − 1) + ...


 ,   ηu = 3.6427 √ε − 1  [1 − 0.2005 (ε − 1) + ...] . (11)

Calculations from the above formulas have shown that an increase in ε entails an increase in ηu and
decrease in f ′′(0). Naturally, the working formulas approximate the exact solution only in the range
1 < ε < ε∗ . Moreover, Eq. (11) can be used only for determining the parametric region of the application of
an approximate solution. Employing the requirement that the second term in Eq. (11) must never exceed
unity, we find the upper limit for ε: ε∗  C 4.

However, this shortcoming can be obviated by resorting to the procedure of restoring the main prop-
erties of the solution on the basis of several first terms of the series [12]. This procedure corresponds to the
summing up of the infinite numerical sequence contained in the main series:

f ′′ (0) = 
1

 √π (ε − 1)
 

1 + 

155

121
 (ε − 1) + 

199

520
 (ε − 1)2



1 ⁄ 4

 , ηu = 
3.6427 √ε − 1

(1 + 0.8068 (ε − 1) + 0.1071 (ε − 1)2)1
 ⁄ 4

 . (12)

It is seen from relations (12) that the calculation of the boundary layer in terms of the variables of
Eq. (6) has the following distinctive feature: when ε → ∞ (and, consequently, u∞ → 0), the quantity f ′′(0)(ηu)
tends not to zero (infinity), but rather to a definite limit:

ε → ∞ :  f ′′  (0) = 


199

520π2




1 ⁄ 4

 ,   ηu = 6.3676 .

This is due to the fact that Eqs. (7) include the regime ε = ∞ as a particular case. It is of interest to note that
when ε ≥ 30, the parameter ε exerts an insignificant effect on the characteristics sought (at most 3% for f ′′(0)
and 6% for ηu). Physically, this means that when ε > 30, the structure of the boundary layer differs insignifi-
cantly from the structure of the boundary layer with ε = ∞ and, therefore, the effect of the cocurrent stream
on the flow in the region with 30 < ε ≤ ∞ can be neglected. Consequently, the results obtained for the bound-
ary layer on a plane surface continuously moving with a constant velocity in a quescent fluid [13] can be
used for the analysis of a flow in the presence of a cocurrent stream (ε > 30).

We also carried out a numerical integration of problem (7) to find out to what extent formulas (12)
describe actual distributions of the characteristics sought. It follows from comparison that the relations calcu-
lated from analytical equations (12) and with the use of the numerical procedure (Table 2) practically coin-

cide: the difference in the values does not exceed 0.04% for f ′′(0) and 0.09% for ηu. If we represent the

numerical data of the regimes with ε > 1 in the form of the ratio 

τw

 ⁄ τw0, where τw0 is the friction stress on

the plate for ε = 0, then the graph of the function 

τw

 ⁄ τw0 has a monotonic character: it starts from zero,

attains unity for ε = 1.51150, and then increases with ε. Therefore, with other conditions being equal, the

shear stresses on the wall for the flow with uw > 1.51150u∞ are higher than for the boundary layer formed on

a stationary plane immersed in a flow.
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An approximate solution of problem (4) can be constructed likewise. Here the formulas that deter-

mine the dependences of the quantities F′′(0) and 
δ∗

x
 Rex

1⁄2  on ε have the form

F′′  (0) = 
1

2
 


11

18π




1 ⁄ 4

 (1 − ε) 

1 + 

109

27
 ε + 

89

27
 ε2



1 ⁄ 4
 ,   
δ∗

x
 Rex

1 ⁄ 2 = 5 


9

65π2




1 ⁄ 4
 

(1 − ε)




1 + 

1255
416

 ε + 
579
416

 ε2



1 ⁄ 4
 . (13)

The calculations have shown that within the range of ε from zero to unity Eqs. (13) yield an error
not exceeding 0.04%. Thereafter, assuming that ε = 0, from Eqs. (13) we obtain

F′′ (0) = 
1

2
 


11

18π




1 ⁄ 4

 ,   
δ∗

x
 Rex

1 ⁄ 2 = 5 


9

65π2




1 ⁄ 4
 .

These results practically coincide with numerical values: the absolute error is equal to about 4⋅10−7. In con-
clusion, we find the pulse-loss thickness δ∗∗ . Since

δ∗∗

x
 Rex

1 ⁄ 2 = ∫ 
0

∞

(F′ − F′2) dζ ,

integration of Eq. (4) from 0 to ∞ yields

 ∫ 
0

∞

(F′ − F′2) dζ = 2F′′  (0) − F (0) (1 − F′ (0)) .

Consequently, in the case of an impenetrable plane surface the value of the dimensionless pulse-loss thickness
is equal to 2F′′(0).

Thus, in the boundary-layer approximation the problem of the laminar mode of nongradient cocurrent
homogeneous flow past a continuously moving (with constant velocity) infinitely thin flat horizontal plate has
been solved. The entire range of change of the parameter ε = uw

 ⁄ u∞, i.e., from zero (uw = 0) to infinity
(u∞ = 0), has been investigated. Numerical data on the coefficient of skin friction, displacement thickness,
form-parameter, and boundary-layer thickness in the ranges 0 ≤ ε < 1 and 1 < ε ≤ ∞ are given. An approximate
analytical solution for the velocity field has been constructed that made it possible to write out in an explicit
form correlations to calculate various characteristics of the boundary layer. It has been established that shear
stresses on the wall for ε > 1.5115 are higher than the values for the case of flow past a motionless surface.

NOTATION

u and v, longitudinal and transverse velocity components; x and y, longitudinal and transverse coordi-
nates; uw and u∞, velocity of the plate and of the main stream; ψ, stream function; ν, kinematic viscosity

coefficient; Rex, Reynolds number; τw, flow shear on the wall; ρ, density; cf = τw
 ⁄ 
ρu∞

2

2
, local coefficient of

friction; δu, boundary-layer thickness; δ∗  = ∫ 
0

∞



1 − 

u
u∞



dy, displacement thickness; erf (z) = 

2
√π

 ∫ 
0

z

exp (−t2)dt,
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integral of probabilities; δ∗∗  = ∫ 
0

∞
u

u∞



1 − 

u
u∞



dy, pulse-loss thickness; H = δ∗  ⁄ δ∗∗ , form-parameter of the bound-

ary layer.
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